NONISOTHERMAL MULTICOMPONENT SORPTION
DYNAMICS IN POROUS MEDIA FOR CONSIDERABLY
DIFFERING MASS-TRANSFER COEFFICIENTS

L. K. Tsabek - | UDC 532.546

Solutions of the equations of multicomponent nonisothermal sorption dynamics are analyzed. It
is shown that inversion occurs when the mass-transfer coefficient of the weakly sorbed com-

ponent is very low.

Noni sothermal multicomponent sorption dynamics in porous media is described by a system consisting
of material-balance equations for each component of the mixture, thermal sorption equations {Eq. (1)], model
kinetic equations for each mixture component [ Eq. (2)], heat-balance equations, model kinetic equations of
heat transfer [Eq. (3)], and initial and boundary conditions [Eq. (4)]:
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To ensure continuity of the solutions, the functions Fom( t) and H{t) must be determined from the equations
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The method of deteymining wm Was given in [1, 2], together with analytical expressions for wgyy, for
sorption and wgn for desorption. The model kinetic equations given in Eq. (2) are valid for porous media
consisting of porous grains, the effective pore size of which is comparable with the molecular dimensions of
the mixture being sorbed. If the effective pore size is significantly larger than the molecular dimensions of
the mixture being sorbed, it is necessary to use the kinetic equations given as Eq. (1.1) in [2]. In order to in-
tegrate Eqs. (1)-(5) for arbitrary initial and boundary conditions and arbitrary form of the function fy,, itis -
necessary to use a difference scheme [3]. An implicit monotonic iterative conservative difference scheme of

accuracy O(h? + 7) for Egs. (1)~(3) takes the form
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The advantage of Eq. (6) is that continuous caleulations for it converge to a class of discontinuous coefficients.
Using the scheme in Eq. (6), which is linearized for error, and estimating the norm of the corresponding

matrices, we can find necessary and sufficient conditions for the convergence of the iterative process, which
will be satisfied if
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When Eq. (7) is satisfied, the necessary and sufficient condition for the absolute stability and convergence of
the difference scheme in Eq. (6) is fulfilled. The coefficients in Egs. (1)-(4) differ: for sorption, fy — fm,
wm ™ Wom» and Yy " Ym; for desorption, £, — f(l’n, Wm w‘%n, and vy 'y;;l. In order to determine the
conditions for which sorption or desorption occurs, it is necessary to use the inequalities
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When the first inequality in Eq. (8) is satisfied, fy, — fi; in Eq. (9); when the second is satisfied, fy, — f %n

in Eq. (9). When the first inequality in Eq. (9) is satisfied, sorption occurs, and when the second inequality

is satisfied, desoxption occurs. When the first inequality of Eq. (10) is satisfied, heating of the porous medium
occurs, and in Eq. (3) it is necessary to make the substitutions m; — my, ms — ms:

.TL_(s\ i+ > T{ill/?l , T(s) J4-1 <T(s) -1 . (10)

When the second inequality of Eq. (10) is satisfied, the porous medium is cooled by a gas—liquid flow, and in
Eq. (3) it is necessary to make the substitutions m; — mf, m3 — m). For numerical integration, Egs. (9 and
(10) must be verified at each grid point i. Ag an example, using the difference scheme in Eg. (6} for the
Langmuir thermal functions
n - * * _
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Fig. 1. Frontal isothermal dynamic curves for three-component
mixture: 0) t?O; 1) 5; 2) 10; 3) 20; 4) 40; 5) 60; 6) 80; 7)
100. The points show invariant solutions of Eq. (20).

frontal dynamic curves were calculated on a BESM-6 computer for a three-component mixture with the fol-
lowing parameters:
Q=0Q=10=01 Q=01 Q=02 Q=03 m=1,
my=0, my=02 o, =25, a,=15, ag=1, n=3, py=4,
P.=2, py=1, Qup= 5, b,=0, F () =1,

The results of the integration are shown in Fig. 1a, b. From an analysis of the nonisothermal frontal dynamic
curves, it is evident that in porous media four stationary concentration and temperature fronts are formed
(Wy = 0.184, W, = 0.86, W3 = 1.85, Wy =3.42; ¢ =1, ) = 0.9784, ¢ =0, ¢’ = 1, ¢}’ = 0.9945, ¢’ =1.29,
D=0, P =1, ¥ =0.9981, ¢ =1.06, ¥ =1.56, ¢ =0, TV =0, TV =0.124, T = 0.154, T = 0.141,
T® = 0). For Langmuir thermal functions with comparable values of the mass-transfer coefficient, there is
no inversion. If one weakly sorbed mixture component has a mass-transfer coefficient significantly lower
than the others, inversion occurs {at first, the strongly sorbed component propagates more rapidly along the
porous medium and then, after a certain lapse of time, it "overtakes" the weakly sorbed component). In the
example shown in Fig. 1, for 0 =t =t s = 7.5, the second component propagates more rapidly along the
porous medium at high temperatures and, for t > ty, it overtakes the weakly sorbed third component, The
value of tx increases as the difference between the coefficients of the second and third mixture components
increases. Equations (1)-(3) permit the existence of invariant solutions of traveling-wave type (stationary

fronts) [4] for my = 0. In the traveling-wave mode, as my, mg — <, this system can be written, after rear-
rangement, in the form
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: +
where q(rg), ciz), T(p), q(rgﬂ), cgﬂ), T(p 1 are values of the equilibrium concentration and temperature
at the left and right, respectively, along the porous medium for a traveling p-wave; Wp is the velocity of

propagation of the traveling p-wave. If, assuming Eq. (16) and an arbitrary form of the function fy,, the solu-
tions ey (y) of Eq. (12) are to be monotonic, the functions Rlz)n(c) should not change sign for crﬁ =S ey =

+ +
c](rg 1). Multiplying Eq. (12) successively by ¢, — cgi) and ¢y — c(nf]'c’1 1) and rearranging, we obtain
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For cg:_+ 1 < cg)l), the sign of the inequalities must be reversed. To determine the monotonic concentra-
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Fig. 2. Thermal functions: 1) arq; (cr, ¢¥', ¢9, 0); 2) azq,
(e, ez, &P, 005 3) asas (o, &5, 05 4) g (er, o, ), TD);
5) oemz(ci“, &y &P, TO); 6) aygs (o, o, ez T); 7) 042012(0(12,
cz, 0, T®); 8) a3q3<o, D, o5, TOY; 9) iy (0, 0, o5, T).

tion distribution in the wave traveling with velocity Wp, we divide the system in Eq. (12) by its s-th equation,
to obtain

depide, =, (xE )R () 1Q, (xX) RV ()] 7%, m=s. (18)

Integrating the system of ordinary equations by Runge's method, and verifying at each successive step of the
integration the necessary and sufficient conditions — Egs. (23) and (17), respectively — for the existence of
invariant solutions of traveling-wave type, we find ¢y = Pmleg). We substitute the solutions Py, (cg) ob-
tained into the right-hand side of the s-th equation of the system in Eq. (12):

dey/dy = Q. (c,) R (Py (e, - -, , Poled Gyled)=FF (c). (19)
Hence, we find the solutions of the system in Eq. (12) in the form {(a= c(sp), b= c(spﬂ))
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If the kinetic rate of heat and mass transfer Qy is large, and my, mg —~ =, then Egs. {1)-(3) are transformed
to give

oy G
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Only three types of invariant solution of Eq. (21) can exist: constant solutions gpy, T = const; discontinuous
solutions of traveling-wave type [the monotonic solutions of traveling-wave form in Eq. (20} transform to

discontinuous solutions when m > «]; and self-modeling invariant solutions of spreading-wave type, which

are found by solving the system
duv,,

dy
The necessary conditions for the existence of n+ 1 invariant solutions of traveling-wave or spreading.wave
type is the existence of n + 1 different roots A; of the matrix Bjy,, where

[18,, — B (0} =0, y=12I ’ (22)

Oy <Thy <. <Ry <<hpoye (23)
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If gy, T #const, solutions of Eq. (22) are found from the system

y= }‘p (U) = )‘p(q, T); E ) } (24)
dv,,/dy = bri(), b =Y, (Ohy/0G,) &) + (Oh,/OT) r(R), (25)

m=1

where rig)(v) is the right eigenvector of matrix Bjy, corresponding to the eigenvalue Ap- For monotonic de-
crease (increase), the solutions of Eq. (25) should satisfy the condition

brie (v) < O (brie) () >0), (26)
We divide the system in Eq. (25) by its (n + 1) -th equation, to obtain
dq,/dT = r@) (v)Ir®), V), m<Ln. (27)

Integrating the system of ordinary equations and verifying at each integration step that Egs. (23) and (26) aré
satisfied, we find gy, = G}, (T). We substitute the solutions obtained into Eq. (24) and find the self-modeling
solutions

T=Y,(), ¢n=Gn (T, ), ¥ (T) = A, (GF(T), ..., GE(T), T). (28)

Each invariant solution is determined by one unknown parameter. It is convenient to take (p*1) and T(p 1)
as the unknown parameters; for the traveling-wave and spreading-wave modes, these parameters are deter-
mined by the method of successive approximation in such a way as to satisfy Eq. (4). For applications, it is
of interest to analyze the equations of motion of the mixture [Egs. (1)-(8)] for the Langmuir functions in Eq.
(11). Taking into account the substitutions Q@mam ~ dm, @mem — ¢m», We write for Eq. (21) the character-
istic equation from which we find the eigenvalue A of the matrix Bim:

m=1
a

V=1 —2 T bm =—Va (h’l Sm)/aT > 0, 7»,: = (u'mpmsmv)—lv
m=l .

We shall show that for
0<a<<hi(l+by) (30)

there are n + 1 roots Ap of Eq. (29). We assume that 7\1* (17 b)) < a< Af+1(1 + by +1). Since the function

H(A, q) has a pole at the point Af, (1 = m = n), decreases monotonically for A = )\{" , and rises monotonically
for A = )\i*+1, Eq. {29) has i roots in the region 0 = A = hi* and n—i—1 roots in the region A = Ai*ﬂ. The
function 8H /8 increases monotonically in the region 7"i* =A= 7\i*+1 and has one zero, and so the function
H(A, 9 has one minimum in this region. The sufficient condition for H(a, q) to have two different roots Aj <
x‘{ in this region is

HQap, 9<U2H@M, 9+HO, 9l =a—hp, bp= 120 +1). (31)

Taking Eq. (29) into account, we transform Eq. (31) to the obvious inequality

S 403 (A7 (14 bp) — al (A — Kig) V (4 — Do) (¥ — ) OF — A <0, (32)
p=t

From the foregoing it follows that, when Eq. (30) is satisfied, the Langmuir thermal function permits the
existence of n + 1 invariant solutions in the porous medium. I a > Aﬁ(l + by), the thermal-wave velocity a
is larger than the concentration-wave velocity, and the heat liberated (absorbed) is rapidly carried fway along
the porous medium. In this case, the sorption dynamics may be assumed to be isothermal. I a > Ap(1 + by),
the function H(A, q) is monotonically decreasing, and Eq. (29) permits the existence of n roots. The right
[rig), rilpll] and left [lg:),l;pzl] eigenvectors of matrix Byy, are

7 = (afh,— 1 —b,) gubk (b — A%, b =1,

(0 = guhat [ — A VIS U = (L—afhy) ™, b [(hm — Ap) VI

+1 . . .
Given the unknown parameter ™ [the other parameters are known, since c;p ) - 0] and using an iterative

graphical-analytic method based on linear concentration and temperature dependences — Egs. (13) and (15),
respectively — we can determine the equilibrium values of concentration and temperature in the traveling-
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wave mode for a mixture of any number of components, without carrying out numerical calculations on 2
computer. The calculation sequence for the iterative method in the case of a three-component mixture with
the parameters of the above example is shown in Fig. 2. The iteration is terminated when the difference be-
tween successive iterations is less than the given accuracy of the calculation.

NOTATION

Cms concentration of m-th mixture component in gas—liquid flow; ¢y, concentration of m-th compon-
ent absorbed by the medium; wy, function describing the filling of the porous grain; gn,, function taking into
account dependence of diffusion coefficient inside porous grain; y‘}n, relative critical coefficient taking into
account mass transfer on external boundary of porous grain; v,,, relative critical coefficient taking into ac-
count mass transfer inside porous grain; o gy, relative coefficient taking into account mass transfer due to
longitudinal effective mixing; mj, ms, relative coefficients of heat transfer between gas flow and porous
grains; my, relative coefficient of heat transfer with external surface of channel composed of porous grains;
Qm, relative thermal effect of sorption (desorption).
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STEADY.STATE TEMPERATURE FIELD OF A
WALL WITH CYLINDRICAL COOLING CHANNELS

V. F. Kravchenko, A. V. Tokarenko, UDC 536,24
and E. L. Prokof'eva

The Bubnov—Galerkin method is combined with the structural method worked out by Rvachev to
solve the problem of the steady-state temperature field of a wall with cylindrical cooling chan-
nels in a two-row arrangement.

We consider a flat wall (~b = y=sbh, —~ <x, z <®), in which there are cylindrical cooling channels of
radius r, arranged as in Fig. 1a. The wall material has a constant thermal conductivity A. At the surfaces
y =+b the wall is heated by the surrounding gas which is at temperature Ty; the heat-transfer coefficient is
@j. This heat is transferred to the massive wall of the cooling liquid with temperature T,; the heat-transfer
coefficient of the surface of a channel containing liquid is «;. We are to determine the steady-state tempera-

ture field of the wall, To do this, we combine the Bubnov—Galerkin method with the structural method worked
out by Rvachev [1-3].

Making use of the symmetry of this unknown temperature field, we can reduce the problem to that of
solving the Laplace equation in region @ (Fig. 1a):

0*0 90
) =0 x = mea W

- A@:—A@:——-(

with the boundary conditions
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